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Summary
The analysis of Thermally Stimulated Depolarization Currents (TSDC) spectra in
polymers requires the introduction of a distribution of relaxation times. Also, a decay of
the induced polarization following a stretched exponential law can be used. Two different
ways for introducing this effect in the TSDC equations are compared here together with
the decomposition in elementary curves by a Simulated Annealing Monte Carlo
procedure to find the distribution. It is found that the stretched exponential applied to
computer generated curves corresponds in both cases to a nearly Debye process. Also the
analysis of the α-peak of poly(ε-caprolactone) with the three approaches are compared.

Introduction
The study of the dielectric relaxation modes in polymers requires the detailed analysis of
the relaxation times involved in each process in order to extract information towards a
better understanding of the molecular structure. Several approaches have been taken to
interpret current results on polymeric materials. The existence of a distribution of
relaxation times resulting from a superposition of parallel Debye-like processes, i.e.
characterized by a single relaxation time, has been traditionally used in the frequency
domain (1-2). Parallel elementary relaxation mechanisms where the entities relax
independently can be discrete or part of a distribution function. The empirical Havriliak-
Negami distribution function (3) has been the most successful as it accounts both for
broadening and asymmetry of the response curves as a function of frequency at constant
temperature. Alternatively, approaches to account for the non-Debye character of the
relaxation function in time domain based on a Kohlrausch-Williams-Watts (KWW)
"stretched exponential" have been justified by different theoretical models (4). The non
exponential relaxation behavior being explained in terms of either a superposition of
Debye processes (5) or a series interpretation involving many sequential and correlated
activation steps towards equilibrium in a hierarchically constrained dynamics for glass
relaxations (6).

Thermally stimulated techniques are both powerful and sensitive to study the
relaxation modes of dielectrically active species in amorphous and crystalline materials.
The advantages of the Thermally Stimulated Depolarization Current technique reside in
its high sensitivity and its capability in separating the segmental α mode corresponding to
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the glass-transition of the material, from the lower temperature β-modes which are caused
by local motions of the dipolar entities. In a TSDC experiment the return to a randomly
oriented state of the electrical dipoles, previously aligned during the polarization step, is
followed as the material is heated at a linear rate. The resulting current is recorded as a
function of temperature. This non-isothermal spectrum has been analyzed in terms of a
distribution of uncoupled Debye processes. An experimental decomposition of the
complex curve can be attempted by the thermal sampling technique (7), which consists in
applying narrow polarization windows and analyzing the resulting spectra as pure Debye
processes. Another approach is to decompose the complex curve in elementary Debye
curves by use of the Direct Signal Analysis (DSA) (8) or the improved Simulated
Annealing Direct Signal Analysis (SADSA) (9) computer programs. The output of the
program is for each energy bin, E0Li, the contribution to the polarization, P0Li, and a
frequency factor, τ0Li, for either Arrhenius, τ(T) = τ0 exp(E/kT), or Vogel-Tammann-
Fulcher (VTF), τ(T) = τ0 exp(E/k(T - T0)), temperature dependencies of the relaxation
times. Instead of using this approach, two interesting contributions (10, 11) have recently
proposed to apply the non exponential decay of the built-in polarization described by the
KWW stretched exponential to the TSDC equations. The resulting expressions for the
depolarization current density, J(T), are remarkably different. The aim of this work is to
compare both results to those obtained by the SADSA method by applying them to
computer generated curves whose activation parameters are known and to discuss the
interpretation that follows.

Experimental and data analysis
The test of the analysis methods discussed here is made on the α-relaxation of a semi-
crystalline poly(ε-caprolactone) film prepared by successive anionic polymerization in
benzene (Mw=124,500, Mn= 83,000). The glass transition temperature, Tg = 207 K and the
degree of crystallinity, Xc = 53% are both determined by differential scanning calorimetry
at 20 K/min (12).

The TSDC experiment records the depolarization current originated by the
random reorientation of the dipolar segments which have been previously oriented by the
application of an electric field at a temperature, Tp, where the species under study are
mobile. The built-in polarization is frozen at low temperatures; the sample is then heated
at a linear rate, bh, and the current density, J(T), is recorded as a function of increasing
temperature. The details of the experiment have been described elsewhere (13).

The computer algorithm is a Monte Carlo procedure where the TSDC curve is
expressed as the sum of N elementary monoenergetic excitations each of energy E0Li and
contributing P0Li to the total polarization. An energy range divided in N intervals of equal
width (bins) centered at E0Li is chosen and the procedure finds the values of P0Li and τ0Li

that best adjust the data by minimizing the set of square residuals using the Simulated
Annealing optimization method (9).

Models
Marchal (10) introduces the stretched exponential in the expression of the time dependent
polarization, P(t) = P0 exp-(t/τ*

M)ß with a relaxation time τ*

M = [ßω1

c 
-ßτM]1/ß, where τM(T)

is the relaxation time of the primitive species, either Arrhenius or VTF. This expression
of τ*

M was introduced by Ngai et al. (4) in their unified theory of dynamical processes in
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complex systems. ωc is the inverse of a characteristic time and typically varies between
109 to 1012 s-1; τ*

M  is the macroscopic effective relaxation time and it is different from the
τ'M value, τ'M = τM [(T-Ti)( ωc/bh]

1-β, which can be measured by TSDC as J(t) = P(t) τ'M =
- dP/dt.

By integrating this last equation and changing t = (T - Ti)/bh, where Ti is the
initial low temperature, Marchal reaches an expression for the TSD Current density,
JM(T), provided that β is independent of T, which for Arrhenius relaxation times is:

Alegría et al. (11) take a different approach and reach a quite different expression
for the TSD Current density. They also start with a stretched exponential for the decay of
the stored charge, Q(t), but they use for describing the decay of Q(t) the relaxation time
τA (T), which is the Arrhenius or VTF expression given above, instead of τ*

M  (T) which is
a much more complicated function. Then, the time derivative of the polarization is
calculated, t is expressed as a function of Q(t), and the expression for the TSD Current,
IA (T), for Arrhenius relaxation times, is now:

Results and discussion
With expressions (1) and (2) a computer generation of KWW TSDC curves is performed
for various sets of parameters. The current density could be simulated by either
calculating the current with these general expressions which involve integrating over
large temperature intervals or in a much faster way by numerically solving the differential
equation J(T) = -bh dP/dT with the appropriate expressions of P(T) for each model.

The curves generated with the differential equation give the same results as those
obtained by numerically evaluating equations (1) and (2). The results shown in Figure 1
(a) and (b) use Marchal's expression, for Arrhenius and for VTF relaxation times
temperature dependencies, respectively. The corresponding curves generated with
expression (2) are shown in Figure 2 (a) (Arrhenius) and (b) (VTF). The heating rate is
always 0.1 K/s, and the area under the curve is kept constant.

The differences between the curves generated with expressions (1) and (2) are to
be noted. Marchal's model drastically shifts the curves to higher temperatures as the
stretching parameter β increases, the variation of the temperature of the peak maxima, Tm,
being larger for the Arrhenius than for VTF relaxation times. As a result of this shift, the
TSDC curve is broadened as it occurs with a single Debye peak. This shift is in the same
direction as the one caused by physical aging where β decreases and Tg shifts to slightly
higher temperatures (14). On the contrary, the curves generated with equation (2) (Alegría
et al.'s (11) derivation) are centered about the same Tm as β decreases except for the two
last β values where the broadening and the asymmetry are so important that they slightly
shift to lower temperatures.

The SADSA procedure is then applied to the TSDC curves generated with
equation (1). The result of the fitting for Arrhenius relaxation times and β = 0.5, is shown
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in Figure 3 (a) where the agreement between the generated points and the fitted curve is
shown to be excellent as quantified by the sum of square residuals (SSR), χ2 = 2.7x10-10.
In Figure 3(b) the energy histogram is plotted and represents the contribution of each
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energy bin to the total polarization. This histogram shows the existence of a predominant
process at 0.483 eV and τ0L= 3.0x10-6 s. The contribution of the other energy bins, that
were included in the energy window, are about 108 times less intense than the main one,
i.e. the relaxation is a Debye peak as it can be fitted with a single pair of E0L and τ0L. The
resulting relaxation time is 198 s to be compared with τ'M (Tm) = 197 s, which is calculated
with the values used in the curve simulation. Similar results are found in the case of VTF
relaxation times for β = 0.5 and with the parameters indicated in the caption of Figure 1.
The predominant bin is located at 0.097 eV and the corresponding preexponential factor
is τ0L = 1.3x10-6 s. The lateral bins are 104 times less intense. The VTF temperature is
found to be 185 K. The agreement between the generated points and the fitted ones is also
excellent here (χ2 = 6.7x10-10). The computed relaxation time is now 43 s as compared
to τ'M (Tm) = 76 s.

The same kind of results hold for a wide range of β values which covers the
usual variation of β reported in the literature for polymeric materials. The results reported
above imply that the TSDC curves generated by equation (1), either with Arrhenius or
VTF relaxation times, are Debye-like peaks as when one tries to extract a distribution of
relaxation times only one energy bin is significantly contributing to the total polarization.
The relaxation times found by the SADSA procedure are in good agreement with
Marchal's τ'M (Tm) which is an indication about the consistency of the model. The
similarity of the KWW generated curves to Debye-peaks is somewhat unexpected as in
the isothermal case a β value as low as 0.5 implies a very noticeable widening (5).



122

The same analysis is then performed with the curves generated with expression (2)
and the results are shown in Figure 4 for VTF relaxation times, and β = 0.5. Here again,
the histogram consists of a predominant bin whose contribution to the total polarization is
93%, and a small lateral bin in the energy window chosen. The other contributions are
negligible. The VTF energy is 0.0475 eV and the preexponential factor τ0L = 1.5x10-5 s.
The best fit is for T0 = 185 K. The agreement between the generated points and the fitted
ones is also excellent here (χ2 = 4.1 x10-10). There is a significant difference of these
values of E0L and τ0L when compared to the values used for the curve simulation as they
are, respectively, half and overestimated by 7 orders of magnitude. Moreover, if the M-L
algorithm is used to fit these curves to a Debye peak the agreement found is also excellent
for the curves generated with equations (1) or (2). There is a difference between the
SADSA results: Alegría's expression always lead to strongly decreasing values of the
energy with ß while with Marchal's expression the energy decreases very slightly as β
decreases. Moreover, the computed τA (Tm) with the simulation parameters is within 60%
of that calculated with the values obtained from the SADSA procedure for β = 0.5. As
Alegría et al. use the variation of the TSDC spectra when bh varies, our simulations and
analysis were carried for 0.01 ≤ bh ≤ 1 K/s. The simulated curves show the same behavior
as those reported on Figures 2 and 4. If log(bh/Tm

2) is plotted against 1/Tm the values
found for EA are within 2% of the values used in the simulation with Arrhenius
dependences for β  ≥ 0.3. This result is a thorough check on the consistency of the model.

The important result is that the curves generated with both expressions (1) and (2)
can be fitted by a distribution which is almost monoenergetic, i.e. with a single relaxation
time; this result was expected only in the case where the β parameter used to simulate
the curves would be equal or close to 1 and not in the whole β range.
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In the case of a TSDC experimental curve such as the dielectric manifestation of
the primary glass transition in poly(ε-caprolactone) the α-peak is represented in Figure 5
(a). Several fittings are performed to this experimental data always using VTF relaxation
times. The SADSA procedure gave the results shown by the continuous curve with a
χL

2 =7.5x10-9 which is very good for an experimental curve as it is only one order of
magnitude larger than that found for computer generated curves. The energy histogram
(figure 5(b)) shows a narrow distribution of relaxation times with a half width less than
0.04 eV, a central value of 0.155 eV for the energy, a VTF temperature of 152.5 K and
/
\ τ0L

\
/  = 4.0x10-12 s. The distribution is slightly asymmetric as seen in Figure 5 (b). The

relaxation time corresponding to the central bin is τL(Tm) = 36 s. If the peak is adjusted
now by the conventional Marquardt-Levenberg (M-L) non-linear least squares fitting to
equation (1), fittings of acceptable quality are obtained, χM

2  =1.1x10-6. This value is 150
times larger than that obtained with the SADSA procedure; the best fit parameters are E0M

= 0.0275 eV, τ0M = 6.7x10-11 s, ωcM = 7.1x1012 s-1, βM = 0.445 and T0M = 172.5 K. With
these values τ'M (Tm) = 76 s, which is about twice the value obtained with the SADSA
parameters. If equation (2) is used with the M-L algorithm the best fit is surprisingly
identical in its trace to that obtained with equation (1) but the final parameters: E0A =
0.125 eV, τ0A = 4.4x10-14 s, T0A = 170.5 K and βA = 0.265, are quite different. These
parameters yield a fitting of the same quality as the fit to Marchal's expression as the SSR
is again χA

2  = 1.1x10-6. Moreover, the calculated τA(Tm) = 34 s, is in this case in very
good agreement with the SADSA value.

In order to further proof the results yielded by the different analysis an estimate
of the fractional free volume, f, at Tm ≈ Tg in the poly(ε-caprolactone) sample, is carried
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out by calculating it with the VTF parameters, using f = α(Tm - T0) with the thermal
expansion coefficient α = k/E. Marchal's parameters would yield an overestimated value
of 12%, while Alegría et al.'s and SADSA would give 2.9% and 3.3%, respectively,
which seems more reasonable and in agreement with reported values (15).

Conclusions
The analysis of computer generated curves with two different current densities derivations
both assuming KWW decay functions for the stored charge(10, 11), is performed by using
the SADSA procedure in order to find the distribution of relaxation times. Different
results are obtained as ß increases; Alegría et al.'s expression leading to a broadening of
the curve without significant temperature shifts, and Marchal's expression steeply shifting
the curve to higher temperatures and broadening it as ß grows. The SADSA method
shows that the two sets of curves can be adjusted by a single Debye peak whose
relaxation parameters are different from those used in the curve generation. However, the
overall relaxation times measured by TSDC are within the same order of magnitude. The
fittings to both expressions of the α-peak in poly(ε-caprolactone) are in worst agreement
than the SADSA procedure, and both of them give the same adjusted trace. However the
energy values in the case of equation (1) seem to be much too low and they lead to an
estimate of a too large fractional free volume.
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